Tag Archives: carbon dioxide pollution

Reforesting the Tropics 2

Saving Humanity: Reforest the Tropics

Buying Time to develop alternative technologiesReforesting the Tropics

Planting trees remains one of the most cost-effective means of drawing excess CO2 from the atmosphere. Therefore, reforesting the tropics will act as carbon sinks, alleviating the greenhouse effect. There are millions of acres of tropical pastures available. When given proper care, orchard tropical trees bear fruit up to 50 years or more.

Reforesting the TropicsPLANT MORE TREES around the world — because… trees are carbon storage (sequestration) experts.

The United States has cut down over 50% of its original forests in the last 400 years, which would have absorbed 50% of its carbon emissions. Once carbon dioxide goes into the atmosphere it stays there for a long time. About 33% continues to cause damage after 100 years.

 It is estimated by the U.S. Forest Service that all the forests in the United States, combined, sequestered approximately 309 million tons of carbon each year from 1952 – 1992, offsetting approximately 25 percent of human-caused emissions of carbon during that period in the United States.

The world’s forests remove over one quarter (27%) of current annual human carbon emissions from the atmosphere each year, the equivalent of about 2.4 billion tons of carbon according to the latest published scientific research.

Reforesting the TropicsThe tropical zones of the world seem particularly attractive for forestation because of the high rates of productivity that can potentially be attained there, and because there appear to be large areas of land that would benefit from tree planting.

Reforesting the Tropics


Young trees absorb CO2 at a rate of 13 pounds per tree each year. Trees reach their most productive stage of carbon storage at about 10 years at which point they are estimated to absorb 48 pounds of CO2 per year and one acre of trees absorbs 2.6 tons of CO2 every year.

 For every ton of new-wood growth, about 1.5 tons of CO2 are removed from the air and 1.07 tons of life-giving oxygen is produced.


Borial zone trees absorb 0.5 Pg C/yr compared to Temperate zone trees at 0.7 while tropical trees grow at the rate of 1.3 or 185% more efficiently year-round than trees in a temperate zone

Younger and faster growing orchards generally have higher annual sequestration rates and they are given higher personal care of proper fertilizer and water: add a further 25% increase. We conclude there is an additional (185% + 25%) or 210% increase in the value of CO2 absorption.

Reforesting the TropicsThis map shows solar-induced fluorescence, a plant process that occurs during photosynthesis, from Aug. through Oct. 2014 as measured by NASA’s Orbiting Carbon Observatory-2. This period is springtime in the Southern Hemisphere and fall in the Northern Hemisphere. Photosynthesis is highest over the tropical forests of the Southern Hemisphere but still occurs in much of the U.S. Grain Belt. The northern forests have shut down for the winter.

 Commonwealth Scientific and Industrial Research Organisation (Australia), CSIRO forests researcher Dr Canadell estimate that tropical forest re-growth is removing an average of 1.6 billion tons of carbon per year. Combining the uptake by established and forest re-growth plus emissions from deforestation, the world’s forests have a net effect on atmospheric CO2 equivalent to the removal of 1.1 billion tons of carbon every year. Reforesting the TropicsReforesting the Tropics

In terms of cutting emissions a 53% reduction in 2010 emissions is equal to almost 20 Gt of CO2 emissions. For some perspective, global emissions from coal fired electricity generation were about 9 Gt CO2 in 2010.

Reforesting the TropicsThe larger predictions from climate models are due to the fact that, within these models, the more important greenhouse substances, water vapor and clouds, act to greatly amplify whatever CO2 does. This is referred to as a positive feedback. It means that increases in surface temperature are accompanied by reductions in the net outgoing radiation – thus enhancing the greenhouse warming. … Satellite observations of the earth’s radiation budget verify this fact.


Moisture created by the rain forests travel around the world. America’s Midwest is affected by the forests in the Congo which is roughly a distance of 6000 miles. Moisture from the Amazon falls as far away as Texas.

The Benefits of Tropical Trees:

Continue reading Reforesting the Tropics 2

Enough Food for the Future? 2

Is There Enough Food for the Future?world food crisis

The new UN climate report shows that crop yields already are being adversely affected by a changing climate, and how we respond globally in creating a more resilient food system is very important now. But we also recognize that food is central to our culture and is a source of great pleasure and comfort to people. We want to ensure we tackle all aspects so that we have enough food for the future.

world food crisis

The estimate of more than 9 billion people in less than 40 years highlights a stark challenge for the global food system.

We have enough food for the roughly 7 billion people alive today, but nearly a billion are hungry or malnourished, mostly due to poverty and unequal distribution. To feed those who are currently hungry—and the additional 2 billion-plus people who will live on the planet by 2050—our best projections are that crop production will need to increase between 60 and 100 percent. “Business as usual” could lead to a doubling of demand for agricultural production.

If the population is growing by less than one-third, why would the overall demand double? Simply stated: more people have more money.

Meeting the problem through production alone won’t be enough, and we should explore many alternatives that focus on reducing demand for food, like changing our diets and reducing food waste and loss. Increasing crop production can be part of the solution.

What drives the demand?

Continue reading Enough Food for the Future? 2



water crisisIf water is not managed better…water OUR THIRSTY WORLD

As water becomes ever more scant the world needs to conserve it, use it more efficiently. Researchers from MIT predict that by 2050, more than half of humanity will live in water-stressed areas, where people are now extracting unsustainable amounts from available freshwater sources.  We can expect a water crisis that will go viral into a catastrophe if we continue with business as usual.

Many people have a strong moral aversion to paying for the life-sustaining liquid. Some feel that water is a right, and should therefore be free. Others lobby governments to subsidize its distribution to favored groups. This results in vast, but preventable waste.

To make matters worse, few places price water properly. Usually, it is artificially cheap, because politicians are scared to charge much for something essential that falls from the sky. This means that consumers have little incentive to conserve it and investors have little incentive to build pipes and other infrastructure to bring it to where it is needed most.

water scarcity

In many countries people can pump as much water as they like from underground aquifers, because rules are either lax or not enforced. But it is unsustainable: around a fifth of the world’s aquifers are over-exploited.

.water crisis

India appears to be headed for a very great water crisis because of the inexpensive available pumps together with a large population:

People do not drink much water—only a few liters a day. But putting food on their tables requires floods of the stuff. Growing 1 lb of wheat takes 125 gallons of water; fattening a cow to produce the same weight of beef involves 12 times more. Overall, agriculture accounts for more than 70% of global freshwater withdrawals. Farmers in parched places grow thirsty cash crops such as avocados, which could easily be imported from somewhere wetter.



Decentralized Tree Nurseries in Africa 2


More than 92 percent of all nurseries catering for villages are still located at regional and district levels. As a result, seedlings have to be transported long distances, sometimes even beyond 50 km. The inadequacy of transport is one of the major setbacks in tree-planting, in terms of both availability and cost. All efforts must be made to decentralize nurseries as much as conditions allow.

To bridge this energy supply-demand gap, a massive amount of tree-planting is needed. The natural forest is shrinking very fast, and most alternative energy sources have had no significant impact so far.

One of the main reasons tree-planting is failing among some African communities is that they are often given species only for firewood, like eucalyptus. 

 Weak village leadership contributes directly to delays over deciding whether to plant trees or not; and then, even if trees are planted, it can retard or neglect maintenance.


Each woman farmer and their family will begin the task of preparing to plant 300 fruit and nut trees on their leased 1.5 acre farms, Every tree will need a 2- 3 feet diameter excavation, where a biochar earth mound will be built of branches.

nursery layout2


biochar mound

The earth mound kiln is built in the following manner:

The bottom of the base is covered with logs forming a grate or crib on which the wood is piled vertically. The grate forms a free space between the bottom and the wood charge through which the air necessary for the carbonization process passes. The piled wood is covered with leaves and grass and then earth about 20 cm (8”) thick.

The pile has an outside stack made of steel drums, which is connected to the pile through a flue cut into the ground, running under the pile and covered with round logs. The pile has a number of air vents located around the circular base.

biochar soil management

The carbonization process is started by introducing a torch into the firing flue opposite the stack. This type of pile is reported to be easy to operate to produce good charcoal quality with a yield of 55% charcoal to wood by volume. The pile’s volume varies from 100 to 250 m³ of wood. The whole cycle takes 24 days; four days for charging, six days for carbonization, ten days for cooling and four days for discharge.

 Carbon Emission to be Solved

Continue reading Decentralized Tree Nurseries in Africa 2



Preventing deforestation is our best chance to conserve wildlife and defend the rights of forest communities. It’s one of the quickest and most cost effective ways to curb global warming.

Worldwide, two billion hectares of land are currently degraded – an area larger than South America. Of this, 500 million hectares are abandoned agricultural land.

The amount of under-utilized and degraded land available in the region to accommodate for future agricultural expansion is estimated at 0.7-1 million hectares.

The Suitability Mapper enables users to identify potentially suitable sites for sustainable palm oil production in the following area:

degraded land

How do we prevent further deforestation?

It is still economically valuable to clear the forest for plantations. As current agricultural land becomes more and more degraded, producers move on to pristine, more productive land, with often harmful consequences such as the loss of forest cover.

If we’re going to stop deforestation, we need governments to do their part. That starts with cracking down on corruption and ensuring fair enforcement of forest conservation rules. Corruption fuels illegal logging and unsustainable forest management.

What is behind DEFORESTATION?




water dry facts

The seriousness of carbon emissions and the resulting impacts of those emissions are starting to have a strong effect on our global environment. From the melting of glacial systems around the world to the increasing intensity of storms and droughts, never has humanity faced a greater challenge than what lies before us today. One only has to observe the historic CO2 levels over the last 800,000 years and compare those numbers to where we are today at 400 ppm to get a clear picture. We need mitigation of emissions.


Replacing “three stone” stoves with pyrolytic stoves provides a health dividend equal the eradication of malaria & AIDs combined. Mitigation of the emissions is the primary aim of these innovative cook stoves.


* About 30% biochar production
* 3 to 4 days for a batch of charcoal production
* Continuous hot water access (pot 1)
* Highly suitable for institutional cooking and as well making biochar
* Additional heat generated by flaring the pyrolysis gases, used for cooking
* Mitigation of the emissions during the pyrolysis by flaring
* Costs about Rs. 3000 (US$45)



biochar7Mwoto TLUD Cookstove is made of sheet metal: fabricated by skilled tinsmiths. Price approx. US$20 (Kenya: $22). The primary air control permits significant turn-down of fire intensity.  (Mwoto Factories Ltd., Kampala)

degraded-land22a mwoto-stove

The Progress Ahead Dr TLUD estimates that only about 20% of what can be known about TLUD gasifiers has been discovered. 80% awaits our efforts. By 2020 there needs to be 30 million TLUD micro-gasifier istoves into the developing societies. Currently there are fewer than one million. www.Mwotostove.com

This is a good example of Mitigation of Emissions:


Carbon Emission to be Solved




Sustainable biochar is a powerfully simple tool to fight global warming. This 2,000 year-old practice converts agricultural waste into a soil enhancer that can hold carbon, boost food security, and discourage deforestation. Sustainable biochar is one of the few technologies that are relatively inexpensive, widely applicable, and quickly scalable.

Farmers in Brazil have long known about the “black earth,” or terra preta, found over vast areas of the Amazon. In the last decade or two archaeologists have begun to realise that the terra preta was not a naturally occurring phenomenon, but had been cultivated over centuries, if not millennia.  They turned some of the wood into charcoal and then worked it back into the soil, creating an unusually rich and fertile ground.

Traditionally, people have used biochar and ash in their fields. This practice exists all over the world. There is a need to recognize the value and create awareness on biochar. Farmers know that wherever biomass is burnt in the field’s crop grows stronger, healthier and better.

 In East Africa, sugarcane and maize waste is normally burned in the field, as it has no other value. In-field burning returns approximately 2-5% of the original carbon to the soil and a negligible amount of NPK.  It does little to improve soil, and is considered a major source of particulate and soot emissions in the region.

Burning without oxygen can also mean burning without smoke, which leads to the idea of replacing home heating and cooking stoves with pyrolizing kilns that provide the same functions but are clean-burning, inexpensive and easy to use, and instead of generating smoke and ash.

Biochar is essentially charcoal, but burnt at a lower temperature and with a more restricted flow of oxygen; it has the potential to end the slash-and-burn cycle in Sub-Saharan Africa.

According to researcher Bruno Glaser at the University of Bayreuth, Germany, a hectare of meter-deep terra preta can hold 250 tons of carbon, as opposed to 100 tons of carbon in unimproved soils. 


In addition, the bio-char itself increases soil fertility, which allows farmers to grow more plants, which allows more bio-char to be added to the soil. Johannes Lehman, author of Amazonian Dark Earths, claims that combining bio-char and bio-fuels could draw down 9.5 billion tons per year, or 35 Gt CO2 per year equal to all our current fossil fuel emissions.

Biochar Trenches

This is the simplest and convenient method for farmers to convert the crop residue / biomass in the farm lands into biochar trenches. All the biochar, burnt soil remains within the field could be conveniently spread by the farmer within the whole field.

It is more convenient to make such trenches after ploughing the field. Trenches perpendicular to the slopes also benefit the steep sloppy areas as water harvesting means. The entire crop residue otherwise burnt openly can be collected and dumped into these trenches lengthwise. More biomass can be added during the process. Once the trench is filled with biomass and compact, it should be covered by grass, weeds, broad leaves, etc. After covering it up, soil should be spread on the trench, a lengthy mound is created. Some water could be used to make the soil compact and for sealing the mound of biomass. A small hole is left open for lighting the biomass at one end and at the other end a very small opening is left open. Once it is lit, white smoke starts emitting at the other end. The result is a smoking mound over the trenches.  

When it smokes too much or when it cracks, too much oxygen is getting in. You must plastered more mud and earth over that part until the leak was stopped. You must keep an eye on the smoke, in order to stop the burn when it changed color. You can stop it by covering it with more earth to entirely cut off the oxygen.biochar-soil-management8

The trenches are 2 to 3 feet depth and 1.5 to 2 feet width. Small holes are to be made in a biochar along the length of the trench at every 10 to 15 feet in a biochar trench. After 24 hours the biomass is converted into biochar. Any little smoke or embers should be quenched with water or covered with soil while removing the biochar from the trench.

The alternative is to burn the biomass openly, which causes pollution and very little carbon is formed.

Over the three year study period, t was observed that the chances of seeds germination are 20% to 30% higher in the soils with biochar compared to control soils. All soil properties except pH showed significant changes. In both biochar amended and control soils, salt, manganese, and potash content showed consistent increases while phosphate content decreased.  Additional phosphate fertilizer may be needed. Organic phosphorus fertilizers come primarily from mineral sources, like rock dust or from bone sources such as steamed bone meal or fish bone meal.


Cacao plants planted into soil rich in biochar started producing fruits half the normal time. Plants seem to be supported for longer and there is less yellowing of leaves. 

BIOCHAR COMPOSTdegraded-land24


Productive African Farms and Emissions 2

More productive African farms could help both people and emissions.

Boosting the efficiency of Africa’s productive lands is not only necessary for feeding larger populations, but also a possible means of reducing emissions.


An article in the Economist, “World climate talks address agriculture” identifies the problem.

SINCE the 1960s farm production has risen fourfold in Africa. But the continent still lags far behind the gains seen in South America and Asia. The extra food has appeared largely because more land has been planted or grazed, rather than because crop yields have improved. Instead, poor farming methods progressively deplete nutrients from soils; almost all arable land in Africa lacks irrigation, for example. This is a particular problem in a continent whose population is set to double by 2050 and which faces regular droughts, floods and heat waves.

The world is already 1°C warmer than it was in pre-industrial times. As it heats further, weather cycles are set to speed up, leaving wet parts of the world wetter and dry parts drier. At either end of the scale, extreme weather events will probably intensify. By 2050, even if temperature rise is successfully limited to 2°C, crop yields could slump by a fifth.

The costs of climate change already come each year to 1.5% of the continent’s GDP, according to the European Commission, and adapting to it will cost another 3% each year until 2030. This is in spite of the fact that, overall, Africa is responsible for just 4% of global emissions annually.

Soil: potential carbon sinks

Fertilizer is extremely important. We cannot feed people if soil is degraded. The production of fertilizer in a form of biochar is absolutely huge which help to absorb carbon in the soils.

Soil in a long-term experiment appears red when depleted of carbon (left) and dark brown when carbon content is high (right).

Scientists say that more carbon resides in soil than in the atmosphere and all plant life combined; there are 2,500 billion tons of carbon in soil, compared with 800 billion tons in the atmosphere and 560 billion tons in plant and animal life. 

degraded land
Soil in a long-term experiment appears red when depleted of carbon (left) and dark brown when carbon content is high (right).

Well-nourished soils are better at absorbing carbon dioxide rather than allowing it to enter the atmosphere. But the continent’s over-grazed, over-used soil currently means Africa only stores 175 gigatons of carbon each year of the 1,500 gigatons stored in the world’s soils. Smarter farming could change all that. The world’s cultivated soils have lost between 50 and 70 percent of their original carbon stock, much of which has oxidized upon exposure to air to become CO2

If we treat soil carbon as a renewable resource, we can change the dynamics.  Restoring soils of degraded and desertified ecosystems has the potential to store in world soils an additional 1 billion to 3 billion tons of carbon annually, equivalent to roughly 3.5 billion to 11 billion tons of CO2 emissions. (Annual CO2 emissions from fossil fuel burning are roughly 32 billion tons.) 

 Soil carbon sequestration needs to be part of the picture. Currently deforestation takes place where vast areas are cleared for new fields because too little grows in existing ones.


Vast areas of deforested land that have been abandoned after soil degradation are excellent candidates for replanting and reforestation using biochar from the weeds now growing there. According to the UN’s Food and Agriculture Organization, grasslands, which cover more than a quarter of the world’s land, hold 20 percent of the world’s soil carbon stock. Much of this land is degraded.

The biochar solution for small farms involves branches of fruit trees, which are cut every year to facilitate the harvest, weigh about 50 tons/ha. If this biomass is converted by pyrolysis to biochar, about 1/3 will revert to 16.7 tons of black carbon/ha and this can be mixed with compost. This will enhance the way biochar develops microbes.


If one third of the degraded land, 660 million ha, are used and every year 15 tons/ha biochar is mixed in the soil, this will be together 10 billion tons of Carbon (10 Gt carbon is equivalent to 3.7 Gt CO2) taken from the air and stored in the soil. This is the amount of fossil CO2 which is just released every year.


The only problem with this solution is the scale. Imagine what it means to use soil carbon sequestration techniques on 10% of all arable land: Millions of farmers must change their way of doing agriculture to make it happen. But the alternative — staying the course of ecological ruin — is not very appealing. 

Hilly Lands

Hilly Land Sustainable Agriculture (HLSA) farming systems feature the establishment of single or double hedgerows of either leguminous tree species, shrubs or grasses seeded or planted along contour lines. Hedgerows, serving as barriers, will conserve surface soil by building up organic mass, increasing plant nutrient elements and improving the water holding  capacity of the soil, thus conserving surface soil by slowing down erosion. Rocks,stubble,  branches and other farm debris are piled at the base of the hedges to further reinforce the foundation of the hedgerows. 

The densely planted hedgerows are pruned regularly to encourage the growth of a thick vegetative canopy and provide a continuous supply of green manure that is scattered on the planting strips between hedgerows.

Trees or shrubs alone used as hedges cannot control effectively soil erosion that can lead to flooding and mass destruction of hilly lands that took centuries to build.

Vetiver grass (Vetiveria zizanioides) provides high biomass production for hedgerows; they have been successfully used in some parts of Thailand, Indonesia, China, and India. The grass has the potential to markedly reduce erosion and rapidly develop natural terraces on slopes with less management attention. It stays alive for 25 to 45 years without being replanted.


Continue reading Productive African Farms and Emissions 2


Optimism on Climate Change

 In the book, Ten Reasons to Look Forward to the Future, Johan Norberg points out that humans are a gloomy species. Some 71% of Britons think the world is getting worse; only 5% think it is improving.  It’s been devastating to see inaccuracies and confusion on the subject sometimes perpetuated by the media, especially on the topic of Climate Change. 

Blood and guts and disasters are what make for headlines. Is it any wonder that we feel apprehensive — with so many disasters “all around us”? The media amplify this distortion. Famines and earthquakes all make gripping headlines; “40 million Planes Landed Safely Last Year” does not.

Pessimism has political consequences. A whopping 81% of Donald Trump’s supporters think life has grown worse in the past 50 years.

Sweden in those days was poorer than Sub-Saharan Africa is today. “Why are some people poor?” is the wrong question, argues Mr. Norberg. Poverty is the starting point for all societies. What is astonishing is how fast it has receded. In 1820, 94% of humanity subsisted on less than $2 a day in modern money. That fell to 37% in 1990 and less than 10% in 2015.

As people grow more adept at abstract thought, they find it easier to imagine themselves in other people’s shoes. And there is plenty of evidence that society has grown more tolerant. The main reason why things tend to get better is that knowledge is cumulative and easily shared.

There is still the question of global warming, which is a worry?  Can human ingenuity tame it?

CAN we change? And the answer, fortunately, is now YES!

We’re seeing a continuing sharp, exponential decline in the cost of renewable energy, energy efficiency, batteries and storage  —  and the spread of sustainable agriculture and forestry  —  giving nations around the world a historic opportunity to embrace a sustainable future, based on a low carbon, hyper-efficient economy. 

WILL we change?

In December, 195 nations reached a historic agreement in Paris, which exceeded the highest end of the range of expectations. And the Paris Agreement is just the most recent example of our willingness to act. Much more change is needed, of course, but one of the binding provisions of the Paris Agreement requires five-year transparent reviews of the action plans put forward by every nation, and the first will begin in less than two years. These countries pledge to act to keep global temperature rises to between 1.5 and 2 degrees.

Also, over 1,000 non-state groups, from Tesco and Tata to Aviva and Cisco, have so far signed the Paris Pledge for Action on Climate. This new movement is  really self-preservation.  It begins with the investors. Would you invest in a company that was insensitive to climate change? Company executives know this insensitivity and they are acting accordingly.

Not only do we have to feel hopeful, but we have to speak hopefully because people are motivated by hope.  For example, global investment in renewables is predicted to be $8,000 billion over the next 25 years;

Carbon Offsetting by Planting Trees –                     Is it a realistic Proposition?

The oceans are enormously important. Carbon dioxide dissolves in the ocean. If that hadn’t happened, and if the oceans weren’t there, climate change would already be much worse.  When CO2 is released into the atmosphere, about three-quarters of it dissolves into the ocean over a few decade (Acidity).

We must concentrate on the rest of the carbon dioxide emissions, which will only be neutralized by a variety of longer-term geological processes over 250 years.

The only true solution to combat climate change is by tree planting. Ending deforestation, which cause 10% of the problem, will not solve global warming by itself —urgent action is needed to cut the other 90 percent of emissions.

The world is home to over three trillion treeswith almost half of them living in tropical or subtropical forests. There are roughly 400 trees for every human. 12,000 years ago, before the advent of agriculture, Earth had twice as many trees as it does now. (The previous estimate of trees in the world was 400 billion.)



 Time to get the calculator and do some sums:

Continue reading CLIMATE CHANGE 2


Here is how we begin our MECHANIZATION REVOLUTION:

 An African Revolution: if agricultural mechanization equipment is sent to an African country, like Ivory Coast, it has a value of $200,000 if it was brand new. The nearly new equipment has a real value of $100,000 hypothetically. The agricultural equipment dealer or farmer working with the dealer receives a tax refund benefit at the rate of the last $1000 owed to the government; say 30% of 100,000 or $30,000 from Living Water MicroFinance Inc., a non-profit company.

Mechanization in Africa

The new owner, Living Water MicroFinance Inc., will sell the equipment in question in Africa and will feel indebted to the previous owner, the equipment dealer or the farmer. This indebtedness will be 50% of the net selling price. This indebtedness will be resolved in our hypothetical example, by the purchase of additional new equipment from the dealer.  

If a farmer were to donate his or her used equipment there would be a large tax refund receipt and a cash credit from a third party, Coop Eau Vivante in Africa to a dealer of his or her choice or some other similar arrangement.

More important there will be a real contribution to poverty and famine in an underdeveloped country. We are talking about increased needed efficiency in the agricultural field, which will lead to more employment as well.

Since the need for this equipment is so high, the equipment will enter duty free and since this equipment will be sent to Africa, copies of bill of lading will be made available to the dealer or farmer. We are presently interested in exporting to Cote d’Ivoire.


YOU CAN HELP by being our Partner: